

Health

Mike Pointer Senior Technical Solutions Manager

© Copyright QinetiQ limited 2004

QinetiQ

• Where have we come from?

QinetiQ came into existence as a 'plc' on 1 July 2001. Prior to that, we were DERA, the UK Ministry of Defence's elite research and development organisation.

Ownership today

QinetiQ

QinetiQ - Key facts

- Long and distinguished history
- 10,500 employees (7,500 scientists & engineers)
- Operate globally (US office two acquisitions 2004)
- Largest science & technology company in Europe
- 2nd largest in the world
- Collaborate with major universities around the world
- Turnover of \$1.6 billion
- IPO planned during 2005/6
- Contracts ranging from \$100K \$10.4 billion
- Work with some of the largest multinational companies in heath sector (medical devices; pharma; biotech)

How we turn capabilities into propositions

An unrivalled record of outstanding scientific and technological achievements QinetiQ developed the following:

- Jet Engine
- Radar
- Carbon Fibre
- Flat panel speakers
- Liquid crystal display ZBD Displays Ltd.
- 2020 speech
- QinetiQ Nanomaterials Itd

Healthcare Managed Services

QinetiQ has outstanding breadth and depth of expertise as a managed services provider across many sectors. "*Safety before profit*" is the fundamental principle to which we adhere.

Our capabilities include:

- risk management
- logistics
- asset management and tracking
- capital investment
- technology insertion and upgrade.

Our track record is one of successfully meeting targets and milestones, delivering quality services and generating substantial cost reductions for our customers.

A selection of key Health market achievements

Developed Products

- World first Non-invasive Fetal ECG monitoring system
- PathScore world first automated diagnostic histopathology breast cancer system
- Ferroguard ferrous metal detector for use in MRI suites.
- Autofocus MRI deblurring product with the Mayo Clinic, US.

Achievements

- In 1997 QinetiQ developed the silicon microneedle, thus enabling the potential for painless drug delivery through the skin.
- DNPO chemical processes co-developed with ICI for improved nitration chemistry

Joint venture product based companies:

PsiMedica - BiosiliconTM based drug delivery system recently granted the world's first licence for human trials

CopyrMELeODe+₂location based metal detection system

QinetiQ innovation in decontamination

- Refining turnaround times
- Securing supply chain efficiencies
- Statistical Process Control
- Decreased pack cool-down period
- Prioritised tracking

Other future innovation

- Improved instrument inspection
- Automated patient record update
- Automatic instrument inspection
- E-business

Introduction of Statistical Process Control in Decontamination

What is Statistical Process Control (SPC)?

The application of statistical methods to identify and control the cause of variation in a process

Where does it come from?

- 1920's Shewhart introduces Statistical Process Control
- 1950's Deming introduces Statistical Process Control to Japan
- 1970's America starts to lose market share
- 1980's "Quality Revolution" begins in America
- 1990's Quality Programs Spread to Service Industries

Why is SPC applicable to decontamination?

- Parameters that can impact Wash Disinfection Process
 - Wash, disinfect process quality
 - Preparation and layout of instruments
 - Length of time soiling is allowed to dry on instruments
 - Water quality
 - Water pressure
 - Water temperature
 - Dosage of disinfectant
 - Drying time
 - Air temperature
 - Air circulation

What do we currently do?

- Monitor
 - Detergent dose
 - Conductivity of the water
 - Temperature during all stages
 - Pump pressure
- Manual comparison / sign off
- "Fail Safe" Independent monitor
- Manual inspection of wash process "Quality"
- Test on a daily & weekly basis
- Calibrate on a quarterly & annual basis

How can we apply Statistical Process Control?

- Monitor number of dirty instruments per basket
- Monitor the number of wet packs per Sterilizer Load

Work required to introduce SPC

- Determine the measurement method
- Qualify the measurement system
- Initiate data collection & SPC charting
- Develop & document Reaction Plan
- Calculate control limits
- Assess control

Data Type	Defect Definition	Sample Size	Chart
Attribute Data - Counted as discrete events	Defect data - Number of defects, not number of defective units	Constant Sample Size	c Chart Number of Defects
		Variable Sample Size	u Chart Defects per Unit
	Defective Unit Data	Constant Sample Size, usually	np Chart Number of Defective Units
		Variable Sample Size usually ≥50	p Chart Fraction of Units Defective
Variable Data		Sample Size = 1	X and R _m Moving Range
- Measured on a continuous scale		Sample Size < 10	\overline{X} and R
		Sample Size > 10	\overline{X} and s

What can we gain?

- Identification of a 'glitch' in the process
- Early warning of a growing trend
- Quality culture
- Confidence in the process
- Reduced testing regime
- Service & maintenance only when needed
- Automatic validation of washer disinfector process

Example monitoring point

• SPC failure at Inspection point after Wash disinfection

Example Monitoring Point

• HTM 2030 RO Water conductivity limit 30µS

Work needed to see maximum benefit

- Risk analysis
- Identification of required data capture
- Parallel running of continuous monitoring with current process
- Trial using good and fault conditions
- National body acceptance

Envisaged challenges

- Working with equipment manufacturers to:
 - Reduced validation
 - Reduced servicing
 - Reduced maintenance cost
- Potential resistance by other stakeholders due to change

Cost of introducing innovation

- Ideas cost little
- Developing demonstrators cost a little more
- Cost benefit analysis break point (1)
- Balancing Stakeholder expectations break point (2)
- Re-evaluate cost benefit analysis break point (3)
- Introducing innovation significant break point (4)
- Recover investment break point (5)

Conclusion

- Small number of UK Customers
- Customers have same objective, different ways of achieving it
- Cost of innovation large
- Supply Chain needs to pull together
- Need a joined up Customer

