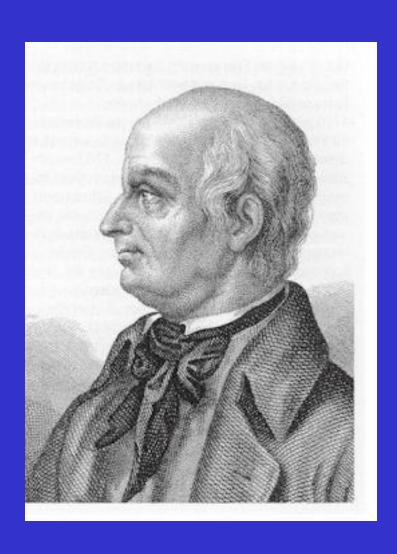
Schweizerische Gesellschaft für Sterilgutversorgung (SGSV) European Federation of Hospital Sterile Supply (/EFHSS) Winterthur, 3. Bis 5. Juli 2993

Bioindikatoren – Sinn oder Unsinn?



Prof. Dr. Peter Heeg
Insitut für Medizinische Mikrobiologie und Krankenhaushygiene
Universitätsklinikum Tübingen

Lazzaro Spallanzani (1729-1799)

Sterility is an unnatural state.

To maintain that unnatural state requires extraordinary means.

(Berube et al. 2001)

Definition I

Bio-Indikatoren sind bestimmte Zubereitungen mit Mikroorganismen, die so beschaffen sind, dass bei Abtötung der Keime durch das Sterilisationsverfahren angenommen werden kann, dass das Verfahren wirksam war.

DIN 58900-1

Definition II

Biologische Indikatoren (BI) sind gebrauchsfertige, beimpfte Keimträger in ihrer Primärverpackung mit definierter Resistenz gegenüber gegenüber einem festgelegten Sterilisationsverfahren

EN ISO 14161

Bio-Indikatoren sind bestimmte Zubereitungen mit Mikroorganismen, die so beschaffen sind, dass bei Abtötung der Keime durch das Sterilisations-Verfahren angenommen werden kann, dass das Verfahren wirksam war.

Biologische Indikatoren (BI) sind gebrauchsfertige, beimpfte Keimträger in ihrer Primärverpackung mit definierter Resistenz gegenüber gegenüber einem festgelegten Sterilisationsverfahren

Bio-Indikatoren für die Sterilisation I

Grampositive stäbchenförmige Bakterien mit Bildung von Endosporen:

- 1. Aerob: Gattung *Bacillus:*
 - B. anthracis
 - B. subtilis
 - B. stearothermophilus

...

Bio-Indikatoren für die Sterilisation II

Grampositive stäbchenförmige Bakterien mit Bildung von Endosporen:

2. Anaerob: Gattung Clostridium:

C. perfringens

C. tetani

C. botulinum

Die Resistenz von Testsporen ist abhängig von:

- der Art der Mikroorganismen
- den Bedingungen bei Anzucht,
 Sporulation, Aberntung, Aufbereituung
- der Lagerung
- den Sterilisationsbedingungen (Direktkontamination)
- den Auswertungsbedingungen: Nährmedium, Inkubationszeit und –temperatur

Grundbegriffe zur Effektivität von Sterilisationsverfahren

D-Wert (Dezimaler Reduktionswert):

Zeit in min zur Abtötung von 90% (1 log-Stufe) eines Mikroorganismus in definierter Ausgangskeimzahl

z-Wert (Neigungswinkel der Abtötungskurve)

Erforderliche Temperatur in °C zur Änderung eines bestimmten D-Werts um den Faktor 10

F-Wert (Effektivität des Prozesses)

Behandlungszeit (Haltezeit) in min zur Reduktion der Ausgangskeimzahl (definierter D-Wert) auf den gewünschten Endwert bei einer definierten Temperatur

Resistenz von Bio-Indikatoren

• F_{BIO} = Zeit, die benötigt wird, um den BI auf 1 KBE zu reduzieren

• $F_{BIO} = log pop X D (min)$

log pop (KBE/Indik.)	D-Wert (min)	F _{BIO} -Wert (min)
log 10E6 = 6	1,5	9
log 10E5 = 5	2,0	10

Log-Abweichung und D-Werte bei 132°C bezogen auf eine log 6-Reduktion bei einem angenommenen $D_{121°C}$ -Wert = 1 min und z-Wert = 8,9°C in einem optimierten Testsystem (Temp. \pm 0,2°C, EWZ \pm 3 s)

Prozessvariable	(-)	(+)	angenommener Wert
Log-Abweichung	1,22	1,12	
D-Wert	0,05	0,07	0,06
z-Wert	8,2"C	9,8°C	8,9°C

(Joslyn 2001)

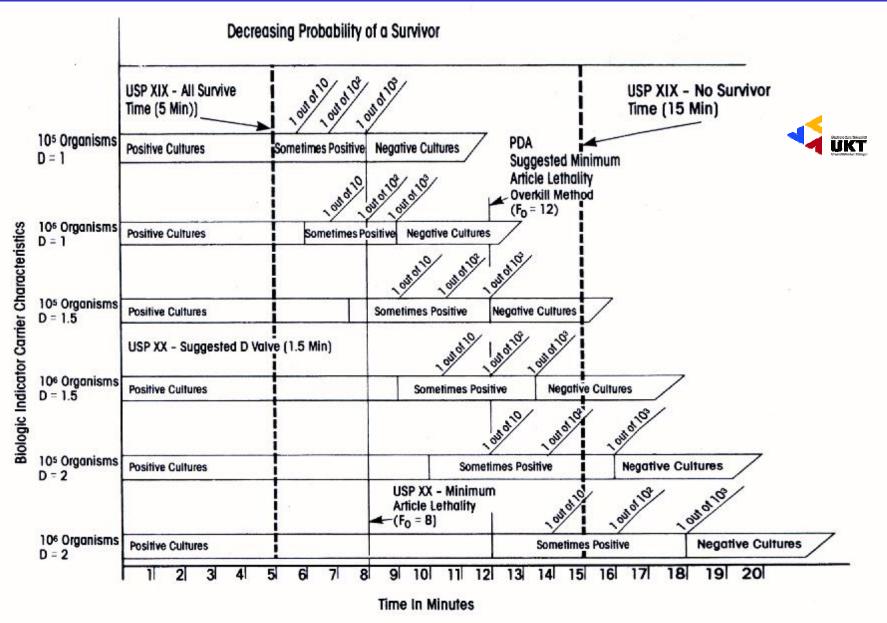


FIG. 36.24. Survival characteristics of biologic indicators at 121°C relative to USP XIX suggested performance characteristics and minimum article lethality (F₀) recommended in literature.

Einsatz von Bio-Indikatoren: Wasserstoffperoxid-Plasma-Sterilisation

Geeigneter Testorganismus: Bacillus subtilis

Bacillus stearothermophilus

Aspergillus niger

Geeigneter Keimträger: Chromatopraphie-Papier

Glasfaservlies

Geeigneter Prüfkörper (PCD): Blisterpackung mit Öffnung

Schlauchprüfkörper:

- beidseitig offen

- einseitig offen

Warum vertrauen wir Bio-Indikatoren?

Sie vermitteln

- eine konkrete Vorstellung vom Ablauf des Sterilisationsprozesses an sich
- und an der Stelle an der sie plaziert wurden
- ein ein starkes Sicherheitsgefühl (unrealistische Bioburden)

- Sie unterliegt nicht der Schwankungsbreite biologischer Verfahren.
- Sie erlaubt sie eine Aussage zur Reproduzierbarkeit des Sterilisations- prozesses
- Sie setzt zwangsläufig einen hohen Grad von Standardisierung - auch der prästerilen Prozesse - voraus

Bio-Indikatoren – Sinn ... ?

- direkte Bewertung der Abtötung von Mikroorganismen
- Möglichkeit der direkten Produktbeimpfung
- Einsatz im Rahmen der Prozessentwicklung (z. B. im "Halbzyklus-Verfahren")
- Einsatz in der Routineüberwachung von Verfahren, bei denen eine parametrische Freigabe nicht möglich ist

Bio-Indikatoren – ... oder Unsinn?

- keine Aussage zur Reproduzierbarkeit des Prozesses
- keine Verifizierung eines SAL von 10-6
- keine rasche Fehleridentifikation, vor allem bei diskontinuierlich auftretenden Fehlern
- Freigabeverfahren im Krankenhaus nicht realisierbar (Zeit!)
- mangelhafte Rechtssicherheit (Medizinprodukterecht, Haftungsrecht)

Much remains to be learned about sterilization.

Larry J. Joslyn in: S. S. Block (ed.) Disinfection, Sterilization ans Preservation, 5th ed., 2001