INFECTION CONTROL and STERILIZATION UNIT

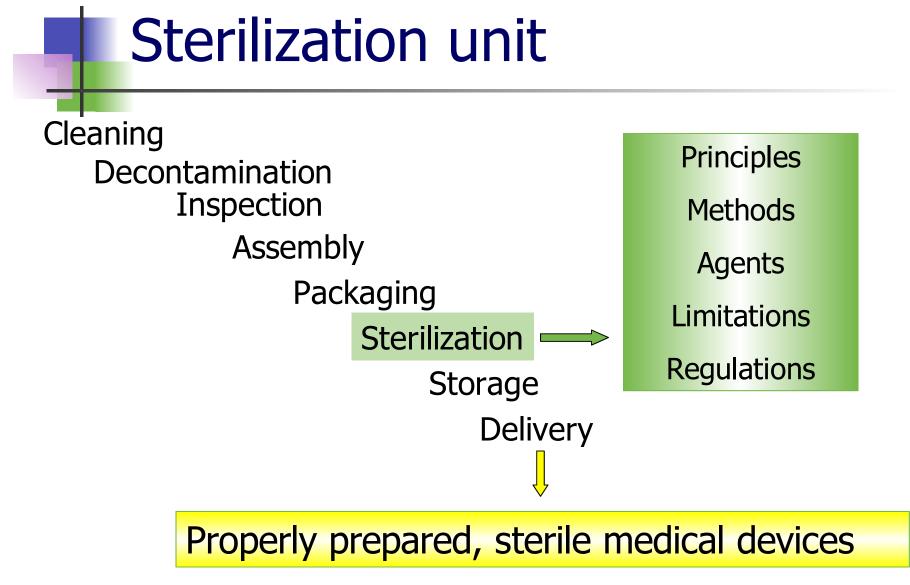
A. Arzu Sayıner, MD Clinical Microbiology Department Medical Faculty Dokuz Eylul University Izmir, TURKEY

Hospital acquired infections

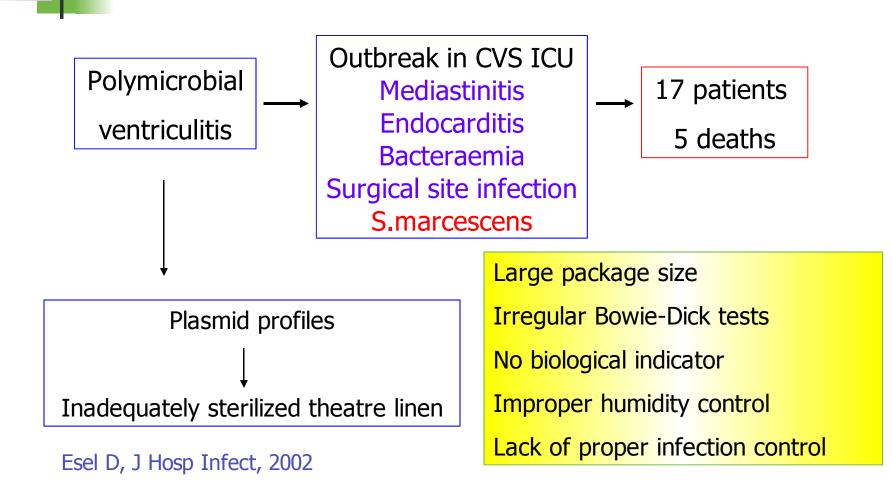
- 3 10 / 100 hospitalized patients USA \rightarrow > 2 million patients / year
- Cross-infections $\rightarrow 11 35\%$
- At least 20% \rightarrow preventable
- Percentage of infections related to the sterilization units → ??

Zero risk should be the standard

MMWR, 1992 Harbarth S, J Hosp Infect, 2003


Outline

- Sterilization failures
 - Complex surgery equipment
 - Endoscopes
 - Reprocessing single use devices
 - Prions


Goal of infection control

- Reduce infection risk
 - Patients
 - Employees
 - Others

Sterilization Unit + Infection control team

Sterilization failure

Complex structured devices

- Narrow and long lumens
- Twisted structure with crevices
- Heat-sensitive material, lubricants
- Small pieces, difficult to detach

Disinfection / Sterilization

- Difficult
- Labor-intensive
- Requires attention to details

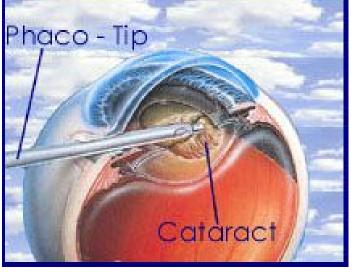
Complex structured devices

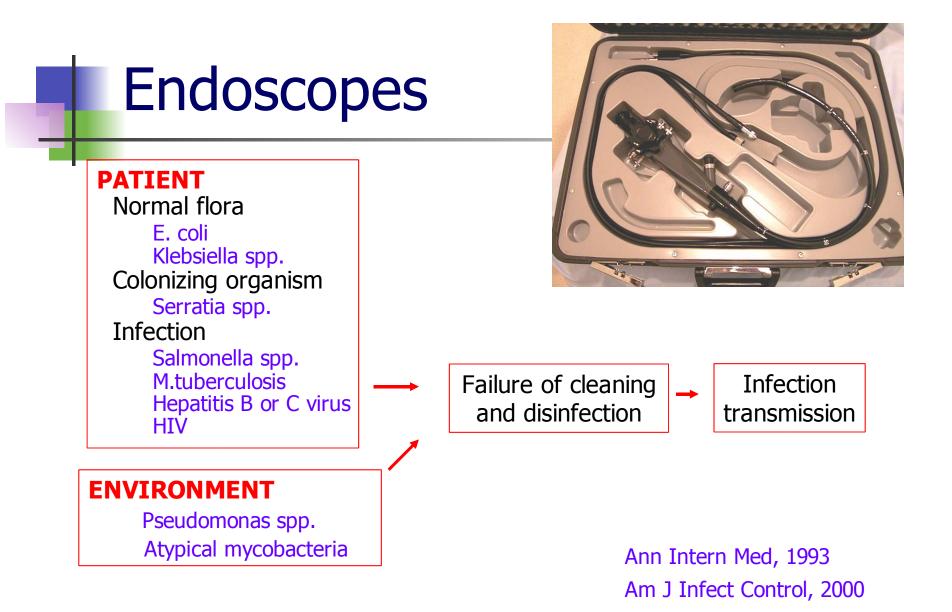
22%

severely

Phacoemulsification instruments

32 sets 16%*


moderately


contaminated contaminated

- lens capsule
- man-made fibres
- squamous cells
- bacteria and fungal elements
- red blood cells
- proteinaceous material.

Endoscopes - Problems of disinfection

- Complex structure of endoscopes and accessories
- Compliance with established reprocessing guidelines

Endoscopy, 2000 Infect Control Hosp Epidemiol, 2003

Disinfection of endoscopes

- 26 hospitals in USA
- 78% \rightarrow failure to sterilize biopsy forceps
- 71 GIS endoscopes

bacterial cultures of internal channels after disinfection

24% grew $\geq 10^5$ colonies

Kaczmarek RG, Am J Med, 1992

Endoscopes - Failures of disinfection

- Inadequate manual CLEANING
 - Cleaning of all channels (flushing, brushing)
- Inadequate disinfection
 - Lack of full immersion in the disinfectant solution
 - Short duration of immersion
 - Unappropriate disinfectant
- Inadequate rinsing and drying
- Lack of sterilization of accessories
- Use of automated endoscope reprocessors
 - Contaminated reprocessor (water bottles and tubes)
 - Improper connection / usage

Endoscope-related transmission

- Colonoscopy HCV
 Biopsy suction channel was not cleaned
 Accessories were not autoclaved
 5 min. immersion in 2% gluteraldehyde
- Bronchoscopy M. tuberculosis
 Poor manual cleaning
 Partial immersion in the disinfectant
 Failure to sterilize biopsy forceps
- Gastroscopy HBV, H.pylori, Trichosporon spp.

Langenberg W, J Infect Dis, 1990 Bronowicki JP, NEJM, 1997 Michele TM, JAMA, 1997 Agerton T, JAMA, 1997 Wenzel R, JAMA, 1997 Larson JL, Infect Control Hosp Epidemiol, 2003

Endoscope related pseudo-infections

Patient is not infected but the culture of the sample taken by the endoscope is positive Pathogens

- P. aeruginosa, S. marcescens,
- M. tuberculosis and atypical mycobacteria

Possible results

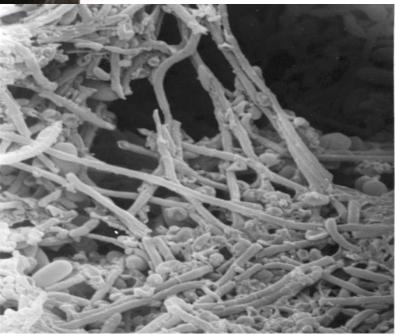
- Transmission → Colonization or infection
- Unnecessary investigations
- Unnecessary treatment

Silva CV, Infect Control Hosp Epidemiol, 2003 Bennett SN, Am J Respir Crit Care Med, 1994

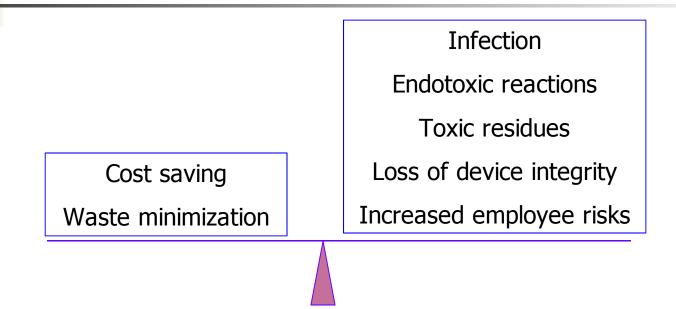
Microbial reservoirs

Biofilm formation

- Layer of bacteria (tightly attached to each other and the underlying surface) and extracellular material
- Difficult to clean
- Protection from disinfection and sterilization
- Importance of mechanical cleaning



Biofilm: Microbial life on surfaces


commtechlab.msu.edu

A biopsy forceps after cleaning, demonstrating residual organic soil

Am J Infect Control, 2000

Reuse of single use devices (SUD)

Controversial but common practice

Collignon PJ, MJA, 1996 and 2003

Muscarella LF, Gastroenterol Nurs, 2001

Studies related to reuse

Ih favor

Catheters \rightarrow Bloom,1997; Kozarek, 1996 Browne, 1997; Druce 2003 Sphincterotomes, papillotomes \rightarrow Cohen,1997; Wilcox 1998 Coagulation probes \rightarrow Roach,1999 Spinal needles \rightarrow Penna, 2000

Against

Endoscope stopcocks \rightarrow Wilson,2000

Biopsy forceps, papillotomes, stone baskets \rightarrow Heeg,2001; Hambrick, 2001

Laparoscopic devices \rightarrow Roth,2002

Reuse-related infections

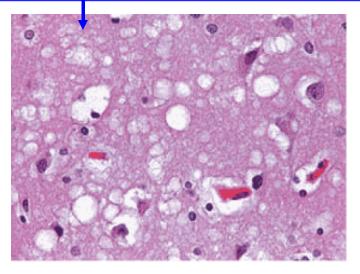
- Frequency is unknown
- May be undetected
 - Long incubation period,
 - Asymptomatic nature of blood-borne viral infections
- Difficulty to trace infections back to reused device

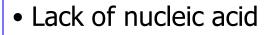
Reuse of catheters

Balloon catheters contaminated with viruses (echo- and adenovirus) Culture and PCR Detectable virus after cleaning + sterilization (glutaraldehyde) Luijt DS, Eur Heart J, 2001

Reuse - Questions

- Which device is suitable for reuse? (instructions of the manufacturer, decision of a central body, etc)
- Is it cost effective?
- What are the risks? (quality assurance and research)
- What are the standards and regulations?
- Is the patient informed?
- Is there a validated cleaning / sterilization process and a guideline?
- Is there a standardised assessment process?
- Is there a tracking system for the outcome?




Abnormal isoform of a host encoded pr

Accumulation within the CNS

Spongioform changes in the brain

Dementia and death

• Resistant to currently used

Normal 'healthy' prion

sterilization methods

• Transmission - cornea, human GH, dura mater grafts, neurosurgical instruments - electrodes

Misfolded 'infectious'

prion (speculative

www.chem.tue.nl

vCJD protein

- Present in lymphoid tissue starting from early (asymptomatic) stages of disease
 - Tonsil
 - Spleen
 - Lymph nodes
 - Appendix
- Incubation period : years

vCJD pr - Risk of transmission

UNKNOWNS

- Number of infected people (prevalence)
- Quantity of prions that can cause cross-infection
- Infectivity of the tissues involved in procedures
- Amount of reduction of infective tissue with the decontamination / sterilization procedures

Possibility of cross-infection with surgical instruments contaminated with lymphoid, neural, ocular tissues

Lowering the risk of transmission

- Using disposables (may be only in UK)
 - Which procedures?

Are the disposables as effective as reusable equipment?

Special decontamination – sterilization methods

How to decide when to use them?

 Separated equipment for diagnosed patients Endoscopes

Method of sterilization for prion

Combinations of

- Immersion in NaOH or sodium hypochlorite (at different temperatures and durations)
- Autoclaving at 121°C (30 min 1 hour) or \geq 132°C

www.who.int/emc-documents, 2003

Type of operation, tissue involved, risk level of the patient

Collaboration between the surgery team, infection control group, sterilization unit

Summary

- Sterilization units' success has a leading role in the prevention of health-care associated infections.
- Problems
 - Sterilization of the complex surgery equipment and endoscopes
 - Reprocessing single use devices
 - Inactivating prions

Success of the sterilization unit

- Skilled personnel
 - Asepsis, cleaning, disinfection, sterilization
- Adequate space and equipment
- Standardized written protocols
- Quality control assurance
- Continuos education
- Communication and collaboration between departments

